(function(){ var C = (typeof window === 'undefined') ? require('./Crypto').Crypto : window.Crypto; // Shortcuts var util = C.util, charenc = C.charenc, UTF8 = charenc.UTF8, Binary = charenc.Binary; // Inner state var x = [], c = [], b; var Rabbit = C.Rabbit = { /** * Public API */ encrypt: function (message, password) { var // Convert to bytes m = UTF8.stringToBytes(message), // Generate random IV iv = util.randomBytes(8), // Generate key k = password.constructor == String ? // Derive key from passphrase C.PBKDF2(password, iv, 32, { asBytes: true }) : // else, assume byte array representing cryptographic key password; // Encrypt Rabbit._rabbit(m, k, util.bytesToWords(iv)); // Return ciphertext return util.bytesToBase64(iv.concat(m)); }, decrypt: function (ciphertext, password) { var // Convert to bytes c = util.base64ToBytes(ciphertext), // Separate IV and message iv = c.splice(0, 8), // Generate key k = password.constructor == String ? // Derive key from passphrase C.PBKDF2(password, iv, 32, { asBytes: true }) : // else, assume byte array representing cryptographic key password; // Decrypt Rabbit._rabbit(c, k, util.bytesToWords(iv)); // Return plaintext return UTF8.bytesToString(c); }, /** * Internal methods */ // Encryption/decryption scheme _rabbit: function (m, k, iv) { Rabbit._keysetup(k); if (iv) Rabbit._ivsetup(iv); for (var s = [], i = 0; i < m.length; i++) { if (i % 16 == 0) { // Iterate the system Rabbit._nextstate(); // Generate 16 bytes of pseudo-random data s[0] = x[0] ^ (x[5] >>> 16) ^ (x[3] << 16); s[1] = x[2] ^ (x[7] >>> 16) ^ (x[5] << 16); s[2] = x[4] ^ (x[1] >>> 16) ^ (x[7] << 16); s[3] = x[6] ^ (x[3] >>> 16) ^ (x[1] << 16); // Swap endian for (var j = 0; j < 4; j++) { s[j] = ((s[j] << 8) | (s[j] >>> 24)) & 0x00FF00FF | ((s[j] << 24) | (s[j] >>> 8)) & 0xFF00FF00; } // Convert words to bytes for (var b = 120; b >= 0; b -= 8) s[b / 8] = (s[b >>> 5] >>> (24 - b % 32)) & 0xFF; } m[i] ^= s[i % 16]; } }, // Key setup scheme _keysetup: function (k) { // Generate initial state values x[0] = k[0]; x[2] = k[1]; x[4] = k[2]; x[6] = k[3]; x[1] = (k[3] << 16) | (k[2] >>> 16); x[3] = (k[0] << 16) | (k[3] >>> 16); x[5] = (k[1] << 16) | (k[0] >>> 16); x[7] = (k[2] << 16) | (k[1] >>> 16); // Generate initial counter values c[0] = util.rotl(k[2], 16); c[2] = util.rotl(k[3], 16); c[4] = util.rotl(k[0], 16); c[6] = util.rotl(k[1], 16); c[1] = (k[0] & 0xFFFF0000) | (k[1] & 0xFFFF); c[3] = (k[1] & 0xFFFF0000) | (k[2] & 0xFFFF); c[5] = (k[2] & 0xFFFF0000) | (k[3] & 0xFFFF); c[7] = (k[3] & 0xFFFF0000) | (k[0] & 0xFFFF); // Clear carry bit b = 0; // Iterate the system four times for (var i = 0; i < 4; i++) Rabbit._nextstate(); // Modify the counters for (var i = 0; i < 8; i++) c[i] ^= x[(i + 4) & 7]; }, // IV setup scheme _ivsetup: function (iv) { // Generate four subvectors var i0 = util.endian(iv[0]), i2 = util.endian(iv[1]), i1 = (i0 >>> 16) | (i2 & 0xFFFF0000), i3 = (i2 << 16) | (i0 & 0x0000FFFF); // Modify counter values c[0] ^= i0; c[1] ^= i1; c[2] ^= i2; c[3] ^= i3; c[4] ^= i0; c[5] ^= i1; c[6] ^= i2; c[7] ^= i3; // Iterate the system four times for (var i = 0; i < 4; i++) Rabbit._nextstate(); }, // Next-state function _nextstate: function () { // Save old counter values for (var c_old = [], i = 0; i < 8; i++) c_old[i] = c[i]; // Calculate new counter values c[0] = (c[0] + 0x4D34D34D + b) >>> 0; c[1] = (c[1] + 0xD34D34D3 + ((c[0] >>> 0) < (c_old[0] >>> 0) ? 1 : 0)) >>> 0; c[2] = (c[2] + 0x34D34D34 + ((c[1] >>> 0) < (c_old[1] >>> 0) ? 1 : 0)) >>> 0; c[3] = (c[3] + 0x4D34D34D + ((c[2] >>> 0) < (c_old[2] >>> 0) ? 1 : 0)) >>> 0; c[4] = (c[4] + 0xD34D34D3 + ((c[3] >>> 0) < (c_old[3] >>> 0) ? 1 : 0)) >>> 0; c[5] = (c[5] + 0x34D34D34 + ((c[4] >>> 0) < (c_old[4] >>> 0) ? 1 : 0)) >>> 0; c[6] = (c[6] + 0x4D34D34D + ((c[5] >>> 0) < (c_old[5] >>> 0) ? 1 : 0)) >>> 0; c[7] = (c[7] + 0xD34D34D3 + ((c[6] >>> 0) < (c_old[6] >>> 0) ? 1 : 0)) >>> 0; b = (c[7] >>> 0) < (c_old[7] >>> 0) ? 1 : 0; // Calculate the g-values for (var g = [], i = 0; i < 8; i++) { var gx = (x[i] + c[i]) >>> 0; // Construct high and low argument for squaring var ga = gx & 0xFFFF, gb = gx >>> 16; // Calculate high and low result of squaring var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb, gl = (((gx & 0xFFFF0000) * gx) >>> 0) + (((gx & 0x0000FFFF) * gx) >>> 0) >>> 0; // High XOR low g[i] = gh ^ gl; } // Calculate new state values x[0] = g[0] + ((g[7] << 16) | (g[7] >>> 16)) + ((g[6] << 16) | (g[6] >>> 16)); x[1] = g[1] + ((g[0] << 8) | (g[0] >>> 24)) + g[7]; x[2] = g[2] + ((g[1] << 16) | (g[1] >>> 16)) + ((g[0] << 16) | (g[0] >>> 16)); x[3] = g[3] + ((g[2] << 8) | (g[2] >>> 24)) + g[1]; x[4] = g[4] + ((g[3] << 16) | (g[3] >>> 16)) + ((g[2] << 16) | (g[2] >>> 16)); x[5] = g[5] + ((g[4] << 8) | (g[4] >>> 24)) + g[3]; x[6] = g[6] + ((g[5] << 16) | (g[5] >>> 16)) + ((g[4] << 16) | (g[4] >>> 16)); x[7] = g[7] + ((g[6] << 8) | (g[6] >>> 24)) + g[5]; } }; })();